Exercise 11

Solve the equation $z^{2}+z+1=0$ for $z=(x, y)$ by writing

$$
(x, y)(x, y)+(x, y)+(1,0)=(0,0)
$$

and then solving a pair of simultaneous equations in x and y.
Suggestion: Use the fact that no real number x satisfies the given equation to show that $y \neq 0$.

$$
\text { Ans. } z=\left(-\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)
$$

Solution

Multiply (x, y) and (x, y) together and add (x, y) and $(1,0)$ together.

$$
\begin{gathered}
\left(x^{2}-y^{2}, x y+x y\right)+(x+1, y+0)=(0,0) \\
\left(x^{2}-y^{2}, 2 x y\right)+(x+1, y)=(0,0) \\
\left(x^{2}-y^{2}+x+1,2 x y+y\right)=(0,0)
\end{gathered}
$$

In order for equality to hold, the real and imaginary parts of both sides must be equal.

$$
\begin{array}{r}
x^{2}-y^{2}+x+1=0 \\
2 x y+y=0
\end{array}
$$

As a result, the complex quadratic equation has been converted to a system of two equations for two real unknowns, x and y. Notice that the second equation is satisfied if $y=0$ or $x=-1 / 2$. If $y=0$, then the first equation becomes

$$
x^{2}+x+1=0,
$$

which has no real solution. If $x=-1 / 2$, then the first equation becomes

$$
\begin{gathered}
\frac{1}{4}-y^{2}-\frac{1}{2}+1=0 \\
y^{2}=\frac{3}{4} \\
y= \pm \frac{\sqrt{3}}{2}
\end{gathered}
$$

Therefore, the two solutions to the complex quadratic equation are

$$
z=\left(-\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)
$$

